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Abstract

Flowfields associated with one-dimensional free-air
explosions are well known both for the point-source casde
and for the case of a blast wave driven by the detonation
of a high-explosive (HE) charge. Considered here is the
two-dimensional case of the reflection of a spherical, HE-
driven blast wave from an ideal plane gurface. The evolu-
tion of the flowfield was calculated with a nondiffusive
numerical algerithm for accurately solving the Euler equa-
tions. This algorithm is based on a gecond-order Godunov
gcheme and a wonotonicity algorithm that is deasigned to
give sharp shocks and contact surfaces while smooth
regions of the flow remain smooth yet free of numerical
diffusion. The incident HE-driven blast wave was accu-
rately captured by a fine-zoned one-dimensional calcula-
tion that was continuously fed into the two-dimensional
mesh. The lattet incorporated a fine-zoned mesh that
followed the reflection region and accurately resolved the
complicated flow structure occurring on multiple length
gcales. Major findings in the regular reflection region
were as follows. Portions of the main reflected shock
reflected within the channel formed by the wall and the
dense HE products, thus creating additional pressure
pulses on the wall. Coherent vortex structures formed on
the fireball as a result of the interaction of the re-
flected shock with this contact surface. The flow did
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indeed make a transition to a double-Mach structure, but gcaled height of burst (HOB) of the explosion, the blast
this transition was delayed 1.5 to 3.8 deg beyond the two- source, and the equation of state (E0S) of the medium
shock limit of regular reflection because the nascent Mach (e.g., Y varles for real air). Hence, such flowfields are
atem was less than one cell high in this region. The not amenable to general solution; each represents a par—
double-Mach structure with its two moving stagnation ticular case.
points was similar (but not {dentical) to an equivalent Much of our knowledge of such reflections comes from
shock-on-wedge case. A key feature of this flow was a considering the flowfield in the near vicinity of the
gupersonic wall jet (velocity of 3.5 to 4.3 km/s) consist- reflection point. By neglecting the rarefaction wave
ing of a free shear layer and a wall boundary layer. The behind the incident shock, one can equate the flow to that
wall jet was laminar in these calculations, but should I produced by a plane, square wave shock reflecting from a
actually be turbulent due to Reynolds number congidera- ‘ plane surface. This is, of course, a good approximation
tions. MNevertheless, calculated peak pressures were found when the flow behind the reflected shock is supersonic
to be in excellent agreement with experimental data at all (relative to the reflection point). Many tools then
ground ranges. become avallable. For example, one can use the shock

polar technlque (Courant and Friedrichs 1948) with an
appropriate equation of state to predict peak pressures in
the regular reflection regime; whereas in the Mach reflec—
Considered here is the two—dimensional axisymmetric tion regime, one must resort to experimental data of shock
reflection of a spherical (high—exploslves—driven) blast reflections from wedges (e.g., Bettrand 1972). One can

I. Introduction

wave from a plane surface. The temporal evolution of the use experimental shock-on-wedge results and thelr asso—
flowfield was calculated with a second-order Eulerian \ ciated empirical theories to predict the transition to
Godunov scheme that accurately solves such inviscid com : Mach reflection and the approximate shock structure.®
pressible flow problems on a very fine computational mesh. Indeed, such analysis predicts that for strong shocks,
The accuracy of the solution was confirmed by experimental transition will proceed from regular to double-Mach
pressure data for the same problem. reflection. One can even view the height—of-burst problem
The details of flowflelds assoclated with one-dimen- as a continuous sequence of shock-on-wedge configurations
sional free-alr explosions are well established. Con- for which the wedge angle varies from 90 deg at ground
sider, for example, the gimilarity sclutions for spherical zero to 0 deg at an infinite ground range. Nevertheless,
blagt waves: the point explosion solution of Taylor (1941) such techniques have a limited utility. They are always
and Sedov (1946), and all classes of blast waves bounded approximations to a truly non-self-similar problem, and
by strong shocks (Oppenheinm et al. 1972a) and by strong ? they do not describe the entire flowfield. To overcome
Chapman-Jouguet detonations (Oppenheim et al. 1972b). ? guch limitations, one must resort to height-of-burst
Other’ examples are the non-self-similar solutlions of the [ experiments and two-dimensional numerical simulations.
decay of a point-source explosion: the original finite i Height-of-burst experiments utilizing HE blast wave
difference calculation (Von Neumann and Goldstine 1955), i gources have been conducted (Baker 1973). Typlcally,
the method of integral relations solution (Korobeinikov ‘ flowfield measurements are limited to near-surface static
and Chushkin 1966), the method of characteristics solution and total pressure histories at a small number of ground
(Okhotsimskii et al. 1957), and the Lagrangian finite- ranges, and high-speed photography. Often there is much
difference calculations (Brode 1955). Also well estab- E scatter in the data due to nonrepeatability of the HE
lished are non-self-similar solutions of the decay of i charges; this scatter limits the scientific usefulness of
spherical blast waves driven by a solid, high-explosives 1 the data. Some of the most repeatable data come from
(HE) charge (Brode 1959). tests performed with 8-1b spheres of PBX-9404 (Carpenter
However, when one considers the reflection of euch 1974). Nevertheless, such measurcments are not sufficient

spherical blast waves from a plane surface, a detailed

description of the flowfields is not generally available.

Such flows are inherently two dimensional. They are driv- 'S:e, for example, Ben—Dor an: g;a;; {197a,d1979), :nggﬁ;nd
th re intrinsi- Class (1981), Shirouzu and Glass 1982), Lee and Glass (1 '

22111’; f:::ﬁ:i-:i::in:“e;ﬂe;n:e:::gepar:::e:ri.cally on the Deachambault and Glass (1983), Bazhenova et al. (1984), Hu and

Glass (1986), Hornung (1985), and Hornung and Taylot {1982).
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to allow one to reconstruct the entire flowfield. For
that, a numerical simulation of the flow is required.

Today, one can simulate the reflection of a spherical
blast wave from a plane surface with numerical codea that
golve the inviscid two-dimenaional Euler equations of gas-
dynamics: for example, a simulation of the Tunguska mete-
orite explosion at an HOB = 305 mlkt3 {Shurahalov 1978)
and the calculation of a polnt—scurce case detonated at an
HOB = 31.7 m/kt3 (Fry et al. 1981). How accurate are such
calculations? One of the difficulties in numerical simu-
lation of such flows 1s the disparity of length scales in
the problem; for example, the height-of-burst scale vs the
Mach stem height (typically less than 1/10 the height-of-
burst scale) vs the boundary layer gscale (which is much
gmaller than the Mach stem height). One must take speclal
care to design the computational mesh to take such dis-
parate length scales into account. With the memory size
and speed of class VI computers guch as the CRAY 1, such
large-scale computations are mnow possible (although expen-
sive}. Of course, one needs a minimal-diffusion numerical
algorithm to maximize the information per grid point. A
noteworthy example is the second-order Eulerian Godunov
acheme of Colella and Glaz (1984, 1985). This code has
been used to simulate shock-on-wedge experiments in the
regular reflection regime and in the simple, complex, and
double-Mach reflection regimes. Excellent agreement with
data was obtained for those cases for which viscous and
nonequilibrium effects were negligible in the experiments
{Glaz et al. 1985a, 1985b, 1986). In some of the double-
Mach reflection cases for which such effects were not
small, qualitative agreement was still found for flowfield
features such as contact gurface/second Mach stem interac—
tion and subsequent vortex rollup. Nevertheless, the
question remains: How accurately can one numerically
simulate the truly nonsteady height-of-burst case?

The objective of this work was then to perform a
highly resolved sumerical simulation of the two-dimen-
glonal reflection of an HE-driven blast wave with the
abovementioned Godunov scheme and to check the accuracy of
‘the solution by comparing it with precision experimental
data. An 8-1b PBX-9404 charge experiment detonated at
HOB = 51.66 ca (Carpenter 1974) was selected for that pur—
pose. A zoning coavergence gtudy (with a fine grid mesh
gpacing of 1.2, 0.6, and, finally, 0.3 mm) was performed
to demonstrate that the results were independent of cell
slze.

The computational technique including the second-order
Godunov scheme, the equations of state, the initial condi-
tione, and the grid dynamics are .described in Sec. 1I.

-
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The numerical results, such as the incident one-dimen-
sional blast wave, the regular reflection regime, transi-
tion, the double-Mach reflection regime, comparisons of
gurface data, and comparisons with an equivalent shock-on-
wedge case, are presented in Sec., III. Conclusions and
recommended improvements are offered in Sec. IV.

11. Computational Method

The equations of compressible hydrodynamics in one

space variable, written in censervation form, are ’
3 ) L)
57 U+ g7 AR+ H=0 (la)
where
p (o] 0
pu ou p
U=qpv} EU) =4 puv HWUu) =40 (1v)
PE puE + up 0
PX puy 0

Here, p is the density; E = (1/2)(u2 + vz) + e is the total
energy per unit mass, where e is the internal energy per
unit mass, u is the component of velocity in the r-direc-
tion, and v is the transverse component of velocity; p is
the pressure; X represents an arbitrary advected scalar
quantity; and V £ V(r) = r®*1l/(a + 1) is a volume coordi-
nate, A = A(r) = dv/dr = t® The values a « 0,1,2 corres=
pond to Cartesian, cylindrical, and spherical symmetry,
respectively. This particular representation of the equa-
tions follows Colella and Woodward (1984) and corresponds
closely to the finite-difference equations that follow.
The pressute is given by an equation of atate:

p = p(p,e) (2)

for single-~fluid hydrodynamics. For the calculations pre-
sented here, it is necessary to use & two-fluid model,
where the two fluids are the detonation product gases and
air. Each of these materials has associated with it an
equation of state of the form of Eq. (2). We let X denote
the volume fraction of high explosives (HE), so that in a
mixed cell, 0 € X < 1. Then our two-fluid treatment is
defined by the last equation in Eq. (1) and by setting

P = Xpyg * (=X)P, ¢, (3
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wherever a pressure 18 needed by the numerical method.
This trelatively crude treatment {in particular, our rell-
ance on the mixture density and internal energy precludes
refercing to the wmodel as a true two-fluid model) turns
out ta be sufficient for the present problem. This ia
largely due to the fact that the dynamics of the material
interface are not of major interest and they do not
directly interact with the Mach stem reglon flowfleld,
which 18 the focal point of this study. Our treatment
here will be superseded by a true pultimaterial algorithm
based on the simple line {ntarface calculation (SLIC)
algorithm of Noh and Woodward (1976} and the Eulerian
second-order Godunov scheme for single-fluid hydrodynamics
(Colella et al. 1986}.

The numerical method used in this study is the version
of the second-order Eulerian Godunov scheme described in
Colella and Glaz (1985). This version was especlally
designed to handle general equations of state of the type
encountered here. The modifications necessary for non-
Cartesian symmetries (i.e.,, a = 1,2) are described in
Colella and Woodward {1984). Operator splitting is used
to solve multidimensional problems; in the axisymmetric
calculation of Sec. III, this means that Egqs. (1) with
a = | are solved in the radial direction with u set to the
radial component of velocity; and then Eqs. (1) with a =0
are solved in the axial direction with u set to the axial
component of velocity. A brief overview of the method for
solving Eqs. (1) is presented below.

Let U" = {U?} represent the cell-averaged solution at
time level t = t%, {.e.,

n V3+1/z
v - (avj)‘l [ utema (4)
V?-lfz

+
TRe computational objective is to define " ! in terms of
V. The conservative, second-order—in-time, finite-dif-
ference representation of Egs. (1) 1s

atl ol ,on o Pl nel/2 n+l/2 _ n¥1/2 ntl/2
A\'j Uj A\’j Uj At [Aj'i'lfz Fj+112 Aj"'lfz Fj-lfz
+ (w5313 - i) 2% ] (s)
ﬁrj + Arj
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where

8vy = Vig1/2 — V3-1/2> Vyel/2 G V(rj+ll2)

a+1/2 o !
AYrLyz = (8t of A[r?ﬂ/z + 8 (r?ﬂn - r3'+1/2)] d8

n+l1/2 +1/2
Here, typical Fiy1/2 = F(U?+1§2). and U?Iif% represents

the average of U along the (j,j+1) interface, i.e.,

Un+1/2 - (At“)“l ftn+l u[ n e1/2 .
J+1/2 " Ty+1/2 * 844172 (¢ -t )’t] de
where

ntl/2 _ [ n+l/2 _ m n
81+1/2 (‘j+1/2 ’j+1/2)/°t

Evidently, a computational scheme in the form Eq. (5) is

+
defined by specifying Ug+i/% as a function of U™,
The first-order Godumov scheme is defined by setting

n+l/2
Uj4)/2 to the solution of the Riemann problem (U?, U?+1)

evaluated along the line r/t = snillg. The high-order
scheme 18 conceptually similar in that a Riemann problem

(1]
(Uj+1/2,L U?+1/2’R) is constructed and solved in the same
way. nHowever,nthe left and right states are now functions
of (Uj—zn---:Uj+2) and (Uj_l,...,Uj+3), respectively.
These additional data are used to create monotonized
piecewise-linear profiles in each computational zone, from
which a version of the method of characteristicas is based
to get new values centered on the interface. The overall
construction, including the solution of the Riemann prob—
lem, i3 equivalent to the method of characteristics (up to
second order) for smooth flow in determining the interface
fluxes. Further details, such as monotonicity constraints
and additional constructions necessary near strong discom-—
tinuities, may be found in the references mentioned.

An important aspect of our numerical method is that we
do not require equation-of-state evaluations at each step
in the Riemann problem iterative solution; it is only
necessary for the approximate method that the equation of

state be evaluated for each U%. The information required
by the algorithm is the dimensionless quantities Y =
y(p,e), T & [(p,e) such that

p = (v1)pe (6)

e e ————— TS
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and 2 = Tplo ' M

where ¢ is the speed of gound. Note that Y # I for a non-—
uvation of state.

pOlY;;:ptiuziioﬁs of state used in the calculations of

Sec. IIL are the equilibrium alr EOS of Gilmore (1955) and

Hansen (1959), and the Jones—Wilkins-Lee {JWL) EOS for

PBX-9404 detonation product gases (Dobratz 1974). The

caloric JWL equation of state takes the form

~R1Po/P -Rzpo/ P 8
p = A(1-wpy/R ple 1°0/P 4 B(l-wpolkzo)e + wpe (8)

whereas the lsentrope is given by

{s the initial charge density and the JWL param—
::zii 28: PRX-9404 are A = 8.545 Mbars; B = 0.2049 Mbars;
C = 0.00754 Mbars; R} = 4,60; Ry = 1.35; w= 0.25. The
pehavior of Y for the JWL EOS way be found by fitting
Eq. (6) to Eq. (8), and T(p,e) can be ca%culated from ihe
isentrope using Eq. (9); in this case, C is obtained in
closed form (Glaz 1979) and Eq. (7) way be used to calcu-
r.
1ate'l'he calculation was run in two atages: first as a
one-dimensional free air purst until ground strike, and
then as a two-dimensional reflection problem. The one=
dimensional calculation was initialized when the detona-
tion wave reached the charge radius R.. The flowfield
inside the charge at that time was assumed to be that of
an ideal Chapman-Jouguet (CJ) detonation (Taylor 1950;
Kuhl and Seizew 1978) with no afterburning. Using the JWL
parameters for a PBX-9404 charge with an initial density )
of p, = 1.84 g/ca>, the CJ state is pcy = 370 kbars; Pcy =
2.485 glemd; ecy = 8.142x1010 erg/g; Wgy = 8.!)!( km/8; ucjy
2.28 km/s; qcy = 5.543x1010 erg/g; T = 2.85; ° = 1.
For an 8-1b sphere the charge radiue was Rp = 7.76 cm.
The ambient atmosphere was initializedgas pa = 1.00 bar;
Pg = 1.1687x1073 glcm3; eg = 2.1390x10 erg/g; u=0;
X =0, A fine-zoned grid {Ar = 0.3 mm) was dynanically
moved with the shock to accurately capture the complex
flow in that region. Coarse zones {Ar = 3} mm) vere used
near r = 0 and for large r; and a transition region con~
nected these cells with the fine grid. After initializa-
tion, the evolution of the one-dimensional blast wave wagé
calculated by solving Eqs. (1} with a = 2 until the shock
radius was equal to the height of burst (51.66 cmj; t =
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97.44 us), This solution was then conservatively interpo—
lated onto a two-dimensional mesh.

The two-dimensional mesh covered a region 0 < r €
100 cm and 0 € z € 20 em (617 r cells by 214 z cells).
Note that the top of the grid was below the height of

burst to pack as many cells near the wall as posaible.
During the computation, the reflected shock never reached
the upper boundary; consequently, it could be treated with
a time-dependent Dirichlet boundary condition. The
Dirichlet data were provided by continuing to update the
one-dimensional solution for each step of the two-dimen-
sional calculation and feeding this solution into the top
boundary. The bottom boundary was treated as an ideal
(slip flow) reflecting plane. The left and right bound-
aries were treated as a symmetry line and an outflow
boundary, respectively. A uniform fine-grid region (267 r
cells by 140 z cells) with A&r = 8z = 0.3 mn was dynami-
cally moved to follow the rightmost shock (the incident
wave at early times and the Mach stem at late times).
Again, transition and coarse cells (Ar = Az = 3 mm) were
used around the fine-grid region. The two-dimensional
calculation was continued until the Mach reflection point
reached B0 cm (270 us). This required 3200 computational
steps and about 9 h CP time on the CRAY 1.

II1. Results

A. Incident HE-Driven Blast Wave

In 1959, Brode performed a piloneering calculation of a
spherically symmetric blast wave driven by the detonation
of a spherical TNT charge (initial charge density of
1.5 g/cm3, detonation pressure of 157 kbars). The one-
dimensional Lagrangian finite-difference scheme used the
artificial viscosity technique (Von Neumann and Richtmeyer
1950) to capture shock fronts, and variable gamma equa-
tions of state to describe the air and detonation producte
gases. He found that an extremely strong rarefaction wave
was created when the detonation wave reached the radius of
the charge. This rarefaction accelerated the detonation
products to a velocity of about 5.5 km/s. The interface
or contact surface, CS, between the air and the detonation
products acted like a spherical piston——thus creating an
air shock (maximum peak pressure of about 400 bars). The
resulting blast wave behaved like a decaying piston-driven
blast wave (Sedov 1959) for shock pressures greater than
about 7 bars, and approached the point-source similarity
solution thereafter. The aforementioned rarefaction wave
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caused the detonation products to overexpand to a velocity
larger than that induced by the air shock. This incom—
patibility was resolved by an inward-facing shock, which
eventually imploded and created a gseries of secondary

pulses at late times.
Our calculation was performed for a spherical PBX-9404

charge (initial charge density of 1.84 g/cm3 detonation
pressure of 370 kbars). The resulting blast wave was
qualitatively similar to Brode's results; hence, the
results will not be reported here in detall. Quantitative
differences were as follows. Peak velocities reached
about 17 km/se, whereas the maximum peak alr-shock pressure
reached about 1 kbar, owing to the larger detonation pres—
sure of the PBX charge. The blast wave approached the
point-source solution at a shock overpressure of about
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Fig. la Tranaition from regular to double-Mach reflection for a

apherical, HE~driven blast wave reflecting from an ideal plane sur—

face. Density contours (10-3 |Ica3).
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13 bars vs 7 bars for TNT. The air shock arrived at
ﬁ;gund zero (l.e., at a shock radius corresponding to the
= 51.66 cm, or 6.78 charge radii) with an incident
over-pressure of 98.86 bars; hence, the flowfield corre-

sponded to a piston-driven wave throughout the entire
regime of the two-dimensional calculation. This led to
shock interactions that are unique to the HE case.

B, Overall View of the Two-Dimensional Reflection

An overall view of the two-dimensional re
:::f:pheiical HE-driven blast wave from an idZiic;i::eOf
sur ce1 s deplcted in Fig. 1l in terms of isodensity, iso-—

ernal energy, and isopressure contours at different
5i?§s. Thirty equally spaced contour values were used,
the minimum and maximum value and step size identi-

e r———— .
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Fig., lc Transition from regular to double~Mach reflection for a
spherical, HE-drivan blast wave reflecting from sn ideal plane sur-
face. Pressure contours (bars).

fied on the plot. This technique gives a conclese display
of the major features of the two—dimensional flowfield:
Discontinuities appear as heavy dark lines {where many
contours group together), rarefaction waves appear as a
fan of contour lines, while plateau reglons are contour-—
free. Contact surfaces may be identified as discontinui-
ties in density and internasl energy, without any jump in
pressure or velocity; slip lines may be distinguished as
contact surfaces with a discontinuous change in velocity;
shocks are denoted by discontinuities with sharp jumps in
pressure.
' In Fig. 1, the incident shock (1), the contact surface
(CS) separating the detonation products and air, and the
inward-facing shock (I') of the incident blast wave are
clearly visible. Reflection of the incident shock 1 from
the plane surface creates the main reflected shock R,
which effectively stops the contact surface CS. At small

400 P. COLELLA ET AL.

ground ranges, the reflected shock propagates upward very
slowly because of the large, downward-directed dynamic
pressure of the detonation products gases of the incident
wave. This is markedly different from the case of the
reflection of a point explosion blast wave in which the
reflected shock propagates very rapidly through the low-
density, high-sound-speed region neat the blast center
(Fry et al. 1981).

Interactions of the reflected shock R with the contact
gurface C5 and the shock I’ create additional shocks near
the ground and generate vortex structures on cS and SL’,

1 fom)

£ lom)

uzFRESSI.BE IBARSH  6,23E+006 1@ 3.25€ 02 STEP 1.10€+01
F e Enhiies e S S T T

z femi

1 lem}

Fig. 2a Interaction of the reflected wave R with tha contact
surface C5 and shock 1' in the regular reflection regime
(t = 171 us; reflection point at 50 cm).
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Fig. 2b Interaction of the reflected wave R with the contact
surface CS and shock I' in the regular reflection regime
(t = 171 us; reflection point at 50 cl).

as shown in Figs. la and 1b. The reflected shock also
deflects the contact surface away from the Mach stem
region so that in thia calculation, the detonation prod-
ucts are not entrained in the Mach stem flow.

C. The Regular Reflection Region

A detalled view of the flowfleld near the end of the
regular reflection region (t = 171 pa, reflection point
at %0 cm) {s shown in Figs. 2a and 2b. The weaker discon-
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rig. 2c. Interaction of the reflected wave R with the contact
surface C5 and shock I' in the regular reflection regime.
Schematic showing wave interactiona: (a) © = 124 us, T = 0 cm;
(b) t = 145 pus, £ = 40 cm; {c) t = 175 ua, T = 50 ca.

tinuities are somewhat difficult to pilck out when they are
located in the coarse-zoned region; hence they have been
depicted schematically in Fig. 2¢.

The reflected shock R interacts with the incident-wave
contact surface CS at point A, creating a reflected shock
RC1 and deflecting CS. Shock RCl reflects off the wall at
point B as a regular reflection, thus creating a second
peak pressure on the wall. The reflected portion of RCl
reflects off contact surface CS at point C, creating
reflected shock RC2, and further deflects contact surface
CcS. Shock RC2 reflects off the wall at point D as a regu-
lar reflection, thus creating a third peak pressure on the
wall, The reflected portion of shock RC2 reflects of £
contact surface CS at point E, creating a third reflected
shock RC3.

The transmitted portion of shock R emanating from
point A interacts with the incident shock 1' {oblique
shock interaction) at point ¥, creating a slip line 1 A
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The transmitted portion of shock 1' emanating from point F
interacts obliquely with the transmitted portion of shock
RCl emanating from ¢ at point G; transmitted shocks from
thie reflection interact with the contact surface CS at
point H, and with slip line SL’ at J. At earlier times, a
transmitted shock from point J interacted with the main
reflected shock at point L. Density/internal energy gra-
dients in the incident wave cause kinks in the main
reflected wave at points K and K'.

In suumary, the following features were found in the
regular reflection region., The main reflected wave R
reflects within the channel formed by the wall and the
dense detonation products (CS), causing additional pres—
gure pulses on the wall. Shock interactions with contact
eurfaces at points A and F inviscldly generate positive
and negative vorticity, respectively, which rolls up into
vortex structures shown in Figs. la and 1b. Finally, the
main contact surface CcS is idealized In this calculation
as a discontinulty. We know experimentally, however, that
this surface 1s irregular and diffused——perturbations on
this surface grow owing to a Rayleigh-Taylor mechanism and
these lead to local turbulent mixing during the evolution
of the incident blast wave (Anisimov et al. 1983). The
strength of reflected shocks RC1 and RC2 will depend on
the mixing across the contact surface C35. These inviacid
calculations, which do not take into account such turbu-
lent mixing, no doubt overestimate the strength of shocks

RCL and RC2.

Table 1 Comparison of regular double-Mach transitions

Incident
Wedge shock Transition
angle, 8 angle, o ground range
Source (deg) (deg) (cm)
Limit of regular reflection
Xuwhl, 1982
(Cilmore's Air EOS 47 43 48,2

1G1lmore 1955))

Glass, 1982

{Hansen's Air EOS 46 4h 49.9
{Hansen 1959%])

HOB calculation
45.5 44,5 52.5

43,2 46.8 35

PRR
MR
.
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D. The Transition Regime

A detalled view of the shock structu -
sition region is given in Fig. 3. In thig i:1§:§a§:3:
transition from regular reflection (RR) to double-Mach’
r:flectlon (DMR) occurred at & ground range of greater
than 52.5 em and less than 55 cm, with corresponding inci-
dent shock angles of 44.5 and 46.8 deg, respectively
gimpariaon with the limit of existence regular refle;tion
{ ;i" the so-called deflection criterion) for real air in

able 1 indicates that the calculated regular reflection
region persisted in this height-of-burst calculation for

1.5 to 3.8 deg beyond the theoretical limit. Note that a ~

similar persistence of regular reflection (PRR} has been

T lem}

!
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L
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Fig. 3) Pressure contours showi gt

) ng transition from regul

c:;:;ble Mach reflection: (a) ¢t = 158 s, r = 45 cn (ng(t)‘;.:b;ot -
us, t = 52.5 cm (PRR); (c) t = 187 ps, T = 55 cm (DMR).
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observed for shock reflections from wedges, both axpetri=
mentally (Bleackney and Taub 1949; Henderson and Lozzl
1975) and numerically, with the same hydrocode used here
(Glaz et al. 1985a, 1985b, 1986).

One can identify three potential reasons for persis-—
tence of regular reflection: 1) real viscosity, 2) aumeri-
cal viscosity, and 1) inadequate zoning. Real viscosity
must be rejected for this case because it was not included
in the calculation. The second-order Godunov scheme used
here leaves essentially no numerical viscosity in the
smooth regions of the flow. However, all shock-capturing
gchemes introduce numerical dissipation at ghock fromnts to
allow a smooth transition between preshock and postshock
gtates. When such algorithms are used to calculate shock
waves near a wall, a "numerical wall boundary layer” 1s
formed (Noh 1976). The primary effect of this 1is to
create an artificial "wall heating"—-typically a few per-
cent. This effect can be seen in the density and radial
velocity contours of Fig. 2, which exhibit a kink at about
the 3-mm height (about ten cells).

A concerted effort was made to minimize computational
cell-gize effects, The 617 by 214 grid used essentially
all of the one-megaword fast core space available on a
CRAY 1 computer. The fine-zoned grid (267 by 140 cells)
that slid with the reflection reglon used cellag of 0.3 by
0.3 mm. Thie resulted in 83 radial cells between the
reflection point at 52.5 cm and the 55-cm polnt, and one
would think that would constitute adequate zoning. How-
ever, the Mach atem grows from a point (in the inviscid
theory) and is never captured computationally until the
ghock structure Erows latge enough to be resolved on the
mesh., Note that at the 55-cm location, the Mach stem was
only about four cells high, If a Mach stem existed at the
52.5-cm ground range, it would be less than one cell high;
hence, it would not have been resolved. A more detalled
{nviscid calculation of transition using a local adaptive
grid refinement (e.g., Berger and Colella 1986) 1s
required to conclusively resolve this zoning question. We
gpeculate that such inviscld calculations will indeed con-
firm that double-Mach reflection will exist immediately
after passing the RR 1i{mit. Therefore, we pelieve that
the persistence of regular reflection in these calcula-
tions is caused by inadequate zoning and the numerical
wall boundary layer, while the persistence behavior
observed in experiments {s due to a viscous wall boundary
effect. To conclusively prove the latter, a viscous cal-
culation of the oblique shock structure at the wall 18
required.
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Peculiar gasdynamic effecta were ohnervad in thia
calculation in the PRR reglon. It is well known that as
the incident shock angle increases in the regular reflec-
tion region, one encounters the sonic criterion (where
gound waves can reach all the way to the reflection point)
about | deg before one reaches the RR limit (Henderson and
Lozzl 1975). 1In such a case, the reflected shock is no
longer straight but continuously curved near the reflec—
tion point. The present calculations also exhibit such
effects. Figure 3 shows that the reflected shock is
gtraight at a ground range of 45 cm (RR) but curved near
the reflection point at 52.5 cm. As shown in Table 2, the
angle of the main portion of the reflected shock increases
smoothly through transition; however, at the wall it jumps
from about 24 deg at the 50-cm range to about 37 deg at
the 52.5-cm range.

The pressure and velocity profiles on the wall also
changed dramatically in the PRR reglon. When the reflec~
tion polnt was at 45 cm, the pressure and velocity gra-
dients were well behaved. However, in the PRR region
{e.g+, with the reflection point at 52.5 cm), the pressure
and velocity gradients on the wall become very large as
one approaches the reflection point from the left.

1n summary, the limit of regular reflection for this
cage 1s 43 to 44 deg (depending on the particular equation
of state used for air) with a corresponding ground range
to transition of 48.2 to 49.9 cm. In this calculation,
regular reflection gseemed to persist to a ground range of
about 52.5 cm (@ = 44.5 deg), but the reflected shock

Table 2 Shock angles near transition

Incident Reflected shock angle
Ground ghock
range angle, « Off wall, Near wall,
(cm) {deg) p{deg} so(deg) Regime
45 42,5 19 19 RR
50 LY ] 24 24 PRR
52.5 46.5 26 ~37 PRR
55 48 28.5 ~37 MR,
57.5 3 1 ~37 DMR
60 5l kL ~37 MR

- et ——————

e ]
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angle near the gurface at this range was consistent with
that of double-Mach reflection (B = 37 deg). Hence, we
believe that it was tndeed a nascent double-Mach structure
that was not computationally resolved on the mesh. As we
shall see i{n the next gection, both local adaptive mesh
refinement and turbulence modeling are required to prop-
erly model certaln details of the flow in the double Mach
region and, by implication, to accurately predict tcansi-
tion.

E. The Double-Mach Region

A detailed view of the complex flowfield in the
double-Mach region 1s presented in Fig. 4 (t = 270 us,
Mach stem at 80 cm). The domain of these figures repré=
gents the fine-zoned region of the calculation (267 r by

Fig. 4a  Shock structure

tion regime (t = 270 ue,
Mach stem at B0 cm).

in the double-Mach reflec-
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140 z cells with a cell size of 0.3 mm}. The incident
shock (I), the reflected shock (R’), and the main Mach
stem (Ml) meet at the main triple point (TPl), generating
a slip line (SL1) that has positive vorticity. Air flows
along SLI and impacts on the wall, thus creating a large
local pressure. This point actually corresponds to a
moving stagnation point (SP1), which is particularly evi-
dent in the relative vector velocity plot of Fig. 4c (the
coordinate system is moving with the veloclity of SPl at
2.308 km/s). The flow overexpands from SPl (about 145
bars) by means of a strong rarefaction wave (RW) and forms
a low-pressure (~10-bar pinimum) supersonic wall jJet (see
the Mach number contours, relative to SPl, of Fig. 4c).
The gas velocity in the wall jet (3.5 to 4.3 km/s) is
larger than the wave velocity of the Mach stem (~2.75
km/8), so the jet rams into the rear of the Mach stem.

Fig. 4b  Shock structure
in the double-Mach reflec-
tion reglme (t = 270 w8,
Mach stem at B0 cm}.
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Fig. 4c  Shock structure
in the double-Mach reflec-
tton regime (t = 270 us,
Mach stem at 80 cm).

o
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This interaction pushes out the foot of the Mach stem and
forces the jet to expand upward two dimensionally, thus
forming a rotational flow and a main vortex v1, which has
positive rotation. The rotational flow near vl is locally
supersonic, and embedded shocks (8', §'t, and gt t?) can be
seen.

The toeing-out of the Mach stem creates a gecond
triple point, TP2. This 18 actually an {nverted Mach stem
structure with an incident ghock M1’, a reflectgd shock
g'', a Mach stem Ml, and a slip line SL2 that has negative
vorticity., This slip line flows up and over the main vor-
tex V1, approaches the wall and stagnates, thus creating a
gecond moving stagnation point (SP2), which is also evi-
dent in the relative velocity vector plot of Fig. 4c. AL
a range of 80 cm, sp? has shocked-up on the wall. All of
slip line SL2 and some of SLl are entralned in a second
vortex structure Vi, which has negative rotation (see
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Fig. 4c). All of the fluid entering the main Mach stem Ml
between triple points TPl and TPZ is entrained in vortex
V2 (see the vorticity contour plot of Fig. &4c).

The gas velocity 1is supersonic above slip line SL1 and
gubsonic below it. Pressure waves from SPl coalesce,
forming the second Mach stem M2?. The latter interacts
with the reflected shock forming a third triple point
(TP3). This also appears to be an inverted Mach structure
with an incident wave R', a reflected wave M2, a Mach stem
R, and a slip line (sL3)., A fourth triple point {TP4) can
be seen on shock M2. 1t appears to be a remnant of the
{nteraction of the embedded shock §ft7 with SL1. 1t has
an incident shock M2, a reflected shock R!!, a Mach stem
M2', and a slip line SL4. Shock R'’ terminates on slip
line SL3, while shock M2' terminates on slip line SLl.

Secondary vortex structures are evident on glip line
sLl (caused by shock M2 and local rarefaction waves) and
slip line SL2 (induced by ghock $''%, and near vortex V1
(the entrained part of SLl that was shocked by S'').

The rarefaction wave behind the incident shock propa-
gates through the DMR structure {see, for example, the
density, internal energy, and pressure contour plots of
Fig. 4a) just as in the regular reflection case; but this
appears to be a weak effect, since the main discontinui-
ties (R', SL1, and M2) are basically straight lines.

Even at the 80-cm range, the wall jet was quite thin
(1.8 mm) and not well resolved (about six cells high);
although very fine zoning was used here, it was still too
coarse for adequate numerical resolution. The slip line
SLl on top of the jet is a free ghear layer subject to

Kelvin-Helmholtz instabilities. Here the Reynolds number
of the jet was about 3x10% based on jet height. It will
no doubt develop vortex structures, leading to turbulent
mixing. Also, the wall boundary layer will reduce the
radial momentum of the jet. Hence, turbulence effects
will {nfluence the entralnment of the maln vortex V1 and
the toeing-out of M1' (i.e., there will be less pushing).
These effects were not modeled in this calculation and
may, in fact, {nfluence transition.

F. Surface Data

Figure 5 gives a detailed snapshot of the complete
flowfield on the surface at the end of regular reflection
(t = 171 ps, reflection point at S0 cm) and in the fully
resolved double-~Mach reglon (t = 270 us, Mach stem toe at
80 cm). Such plots augment the {nterpretation of the con~
tour plots in Figs. 2 and 4. The reflected ghocks R, RCl,

s ——mm -
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Fig. 58 Comparison of sucface-level flowfields in the regulart
reflection regime (¢ = 171 ys) and double-Mach reflection regime

(¢t = 270 us).

and RC2 (as well as additional wave structures near the
origin) can be secn. Both RC1 and RCZ reside in the
coarse-zoned reglon at these times; hence they appear
gomewhat diftused.

In the double-Mach region, the main features of the
flow are sharp and well resolved. Moving stagnation
points SP1 and SP2, the shocks M1’ and §', and the slip
gurface 5Ll are clearly visible. The gas overexpands from
stagnation point SF1, reaching a maximum velocity of about
4.2 km/s (Mach number of about 5.4) before it is shocked
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Fig. 5c  Comparison of surface-level flowfields in the regular
reflection regime {t = 171 us) and double-Mach reflection regime
(t = 270 us).

in Fig., 6. The incident overpressure at ground zero of
98.86 bars reflects to a peak value of 880 bars. The cor-
responding theoretical reflection factor for real alr 1s
9,43, which results in a theoretical reflected pressure of
932 bars (va 880 bars for the two-dimensional calculation,
or 6 percent low due to zoning). The reflected pressure
curve R agrees very well with the experimental data of
Carpenter (1974), thus indirectly confirming that the cal-
culated inclident blast wave closely simulated the experi-
mental blast wave. Near ground zero, the shocks RC1 and
RC? are much stronger than the reflected shock R, but they
decay more rapidly. As mentioned before, calculated
values for RCl and RCZ are expected to be too large
because of the sharp contact surface ia this calculation.
Note in particular that the pressure range curve for
shock R suffers a jolt at 49.5 cm (l.e., near the RR
1init) and locally increases at 53 cm~-this behavior per-
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Fig., 6) Comparisons of calculated peak pressures on the surface
with experimental data (Carpenter 1974).

haps being a consequence of the arrival of the sonic point
singularity and the formatiomn of a nasceat Mach stem.

In the double-Mach region, the main stagnation point
SPl decays from 290 bars at transition to a value of about
100 bars at 80 cm. Stagnation point SP2 and shock M1’
decay rather slowly from about 100 bars to 75 bars. In
general, the calculated peaks in the double-Mach region
are in excellent agreement with the experimental data
(Carpenter 1974) even at 53 cm, where the grid points were
inadequate to resolving the double—-Mach stem.
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G. Comparisons with DMR on Wedges

Considerably more {s known about the details of
double~Mach shock structures created by plane shock
reflections from wedges. Such flows have many useful
features:

1) The flows are self-similar (two-dimensional
Cartesian), and hence are more amenable to analysis.

2) Experimental photographic results (e.g., Schlieren,
ghadowgraph, and jnterferometric data) are avallable to
verify code calculations.

3) The complicating effects of a rarefaction wave
behind the incldent ghock are absent.

In addition, wedge results (e.g., reflection factors)
are often used to approximate the height-of-burst case.
Hence, it is useful to explore the equivalence of the DMR
flowflield for the wedge case corresponding to the helght-—
of-burst case.

The double-Mach structure at a time of 270 us {Mach
stem at 80 cm) from the present calculation was selected
for comparison. At this time the incident ghock Mach num=
ber (My) was 5.46 with an incident shock angle of about
57 deg. The equivalent wedge case was constructed as fol-
lows. A 500x100 y-cell two-dimensional Cartesian mesh was
chosen with square zones (Ax = by = 1 unit). The shock
properties corresponding to an My = 5.46 real alr shock
were continuously fed into the left side of the grid at a
ghock angle of 57 deg (wedge angle of 33 deg). The
second-order Godunov scheme (with Gilmore's equation of
gtate for real air) was then used to calculate the
reflected flowfield.

The results of the wedge case are shown in Fig. 7. By
design, the calculations are identical at the main triple
point TPl. The overall features of the wedge flowfield
are quite similar to the height-of-burst case (Fig. 4),
considering that the wedge case was about 2.4 times wmore
coarsely zoned, Peak pressures on the wall {SP1) were
133 bars {instantaneous value at 75.2 cm) for the height-
of-burst case and 122 bars for the wedge, yielding
“reflection factors™ of 3.8 and 3.3, respectively.

The principal differences are the reflected shock
angle and the location of triple point TP3. The reflected
shock angle of 49 deg for the height-of-burst case 18 con~
giderably steeper than the 22-deg angle for the wedge
cagse. In the height-of-burst case, the rarefaction wave
behind the incident shock allows the reflected shock R to
move upward more easily into the {ncident wave. This '
causes the second Mach estem (M2) to be more vertical and
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r:upond to the HOB results at 270 us); {c) wvall pressure distribu—
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the length of the reflected shock R’ to be about half the
value found for the wedge case. (To elucidate these
points, shocks M2 and R for the height-of-burs* case are
depicted as dashed lines on the wedge resuits.) Conse-
quently, the distance between points SPl and ML’ (i.e.,
the DMR duration) is somewhat shorter in the height-of-
burst case.

In summary, we may conclude that the height-of-burst
case is truly nonsteady, and hence not amenable to simi-
larity analysis. The rarefaction wave behind the incident
shock modifies the reflected shock angle at TP3 and there-
by influences the location and shape of the second Mach
stem M2, compared to the equivalent wedge case. Because
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peak reflected pressures and “"reflection factors™ are a
consequence of the gasdynamic state at the main triple
point, they are similar for the two cases. However, the
height—of-burst “reflection factor” (R=bApgp)/ bpy) must be
based on instantaneous values (with SPL, TPL, and Ml' all
being at different cadiil from the explosion center).

1v. Conclusions

The present calculation demonstrates that the reflec—
tion of a spherical HE-driven blast wave from a plane sur-—
face creates complex flow structures on multiple length
scales. In the regular reflection region, portions of
ghock R reflect withinm the channel formed by the wall and
the dense detonation products, thus producing additional
pressure pulses on the wall. The interaction of shock R
with contact surface cS and slip line SL' inviscidly gen-
erates vorticity, which leads to the formation of large-
gscale vortex structures ({.e., turbulent aixing) on the
interface between the detonation products and the air. 1In
the double-Mach flow structure, slip lines emanating from
triple points TP and TP2 are directed downward. The flow
is forced to turm parallel at the wall, thereby converting
some of the flow kinetic energy into pressure and creating
stagnation points 5Pl and SP2 that move with the DMR
gtructure. This also creates & supersonic wall jet con-
aisting of a free ghear layer and a wall boundary layer.

The Reynolds number of the jet ls quite large, ranging
from 3x10% for this case to 107 for large-scale explo-
sions. Hence, one would expect stroug turbulent mixing at
the free shear layer; however, the wall jet in these cal-
culations was laminar. The second-order Godunov algoritha
used here is nondiffusive enough to be able to calculate
the evolution of discrete vortex structures started from
fnviscid Kelvin-Helmholtz instabilities (Glowacki et al.
1986) if adequate zoning i{s used in the jet (about flve
times finer than that used here). The wall boundary layer
was not modeled. Both effects will influence the horizon—
tal momentum of the jet, the toeing-out of the Mach stem,
and the rotational flow of the main vortices vl and V2.
Adaptive gridding and a viscous wall boundary layer capa~
bility are needed to accurately model these details.

A double-Mach shock structure appeared 1n this calcu-
lation at a ground range between 52.5 and 55 cm, which was
1.5 to 3.8 deg beyond the 1imit of regular reflection. We
believe that the go—called persistence of regular reflec
tion in this calculation was caused by inadequate computa—
tional zoning, whereas the persistence in experiments is

et m b et Mo % n . - . b
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due to viscous wall boundary layer effects. Adaptive
gridding and a viscous wall boundary layer capability are
again needed to accurately calculate such flows.

The double-Mach shock structure directs some of the
blast energy toward the surface, and thereby extends the
high enthalpy flow to larger ground ranges. The calcu-
lated surface-level peak pressures are in excellent agree-
ment with experimental data at all ground ranges.

A shock-on-wedge calculation was also performed to
gimulate the double-Mach flowfield from the height-of-
burst case at t = 270 us (Mach stem at B0 cm). Overall
features of the flow were quite similar im both cases.
The principal differeances were the reflected shock angle
which was larger in the height—of-burst case; and the '
location of triple point TP3, which was closer to TP! in
the helght-cf-burst case. These effects were attributed
to the incident wave rarefaction effects and true non-
steadiness of the helght—of-burst case.
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